2.11BSD-UFS/ufs_bio.c
/*
* Copyright (c) 1986 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.
*
* @(#)ufs_bio.c 2.2 (2.11BSD) 1996/9/13
*/
#include "param.h"
#include "buf.h"
#include "user.h"
#include "conf.h"
#include "fs.h"
#include "dk.h"
#include "systm.h"
#include "map.h"
#include "uba.h"
#include "trace.h"
#include "ram.h"
/*
* Read in (if necessary) the block and return a buffer pointer.
*/
struct buf *
bread(dev, blkno)
dev_t dev;
daddr_t blkno;
{
register struct buf *bp;
bp = getblk(dev, blkno);
if (bp->b_flags&(B_DONE|B_DELWRI)) {
trace(TR_BREADHIT);
return (bp);
}
bp->b_flags |= B_READ;
bp->b_bcount = DEV_BSIZE; /* XXX? KB */
(*bdevsw[major(dev)].d_strategy)(bp);
trace(TR_BREADMISS);
u.u_ru.ru_inblock++; /* pay for read */
biowait(bp);
return(bp);
}
/*
* Read in the block, like bread, but also start I/O on the
* read-ahead block (which is not allocated to the caller)
*/
struct buf *
breada(dev, blkno, rablkno)
register dev_t dev;
daddr_t blkno;
daddr_t rablkno;
{
register struct buf *bp, *rabp;
bp = NULL;
/*
* If the block isn't in core, then allocate
* a buffer and initiate i/o (getblk checks
* for a cache hit).
*/
if (!incore(dev, blkno)) {
bp = getblk(dev, blkno);
if ((bp->b_flags&(B_DONE|B_DELWRI)) == 0) {
bp->b_flags |= B_READ;
bp->b_bcount = DEV_BSIZE; /* XXX? KB */
(*bdevsw[major(dev)].d_strategy)(bp);
trace(TR_BREADMISS);
u.u_ru.ru_inblock++; /* pay for read */
}
else
trace(TR_BREADHIT);
}
/*
* If there's a read-ahead block, start i/o
* on it also (as above).
*/
if (rablkno) {
if (!incore(dev, rablkno)) {
rabp = getblk(dev, rablkno);
if (rabp->b_flags & (B_DONE|B_DELWRI)) {
brelse(rabp);
trace(TR_BREADHITRA);
} else {
rabp->b_flags |= B_READ|B_ASYNC;
rabp->b_bcount = DEV_BSIZE; /* XXX? KB */
(*bdevsw[major(dev)].d_strategy)(rabp);
trace(TR_BREADMISSRA);
u.u_ru.ru_inblock++; /* pay in advance */
}
} else
trace(TR_BREADHITRA);
}
/*
* If block was in core, let bread get it.
* If block wasn't in core, then the read was started
* above, and just wait for it.
*/
if (bp == NULL)
return (bread(dev, blkno));
biowait(bp);
return (bp);
}
/*
* Write the buffer, waiting for completion.
* Then release the buffer.
*/
bwrite(bp)
register struct buf *bp;
{
register flag;
flag = bp->b_flags;
bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
if ((flag&B_DELWRI) == 0)
u.u_ru.ru_oublock++; /* noone paid yet */
trace(TR_BWRITE);
bp->b_bcount = DEV_BSIZE; /* XXX? KB */
(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
/*
* If the write was synchronous, then await i/o completion.
* If the write was "delayed", then we put the buffer on
* the q of blocks awaiting i/o completion status.
*/
if ((flag&B_ASYNC) == 0) {
biowait(bp);
brelse(bp);
} else if (flag & B_DELWRI)
bp->b_flags |= B_AGE;
}
/*
* Release the buffer, marking it so that if it is grabbed
* for another purpose it will be written out before being
* given up (e.g. when writing a partial block where it is
* assumed that another write for the same block will soon follow).
* This can't be done for magtape, since writes must be done
* in the same order as requested.
*/
bdwrite(bp)
register struct buf *bp;
{
if ((bp->b_flags&B_DELWRI) == 0)
u.u_ru.ru_oublock++; /* noone paid yet */
if (bdevsw[major(bp->b_dev)].d_flags & B_TAPE) {
bawrite(bp);
}
else {
bp->b_flags |= B_DELWRI | B_DONE;
brelse(bp);
}
}
/*
* Release the buffer, with no I/O implied.
*/
brelse(bp)
register struct buf *bp;
{
register struct buf *flist;
register s;
trace(TR_BRELSE);
/*
* If someone's waiting for the buffer, or
* is waiting for a buffer, wake 'em up.
*/
if (bp->b_flags&B_WANTED)
wakeup((caddr_t)bp);
if (bfreelist[0].b_flags&B_WANTED) {
bfreelist[0].b_flags &= ~B_WANTED;
wakeup((caddr_t)bfreelist);
}
if (bp->b_flags&B_ERROR)
if (bp->b_flags & B_LOCKED)
bp->b_flags &= ~B_ERROR; /* try again later */
else
bp->b_dev = NODEV; /* no assoc */
/*
* Stick the buffer back on a free list.
*/
s = splbio();
if (bp->b_flags & (B_ERROR|B_INVAL)) {
/* block has no info ... put at front of most free list */
flist = &bfreelist[BQ_AGE];
binsheadfree(bp, flist);
} else {
if (bp->b_flags & B_LOCKED)
flist = &bfreelist[BQ_LOCKED];
else if (bp->b_flags & B_AGE)
flist = &bfreelist[BQ_AGE];
else
flist = &bfreelist[BQ_LRU];
binstailfree(bp, flist);
}
bp->b_flags &= ~(B_WANTED|B_BUSY|B_ASYNC|B_AGE);
splx(s);
}
/*
* See if the block is associated with some buffer
* (mainly to avoid getting hung up on a wait in breada)
*/
incore(dev, blkno)
register dev_t dev;
daddr_t blkno;
{
register struct buf *bp;
register struct buf *dp;
dp = BUFHASH(dev, blkno);
blkno = fsbtodb(blkno);
for (bp = dp->b_forw; bp != dp; bp = bp->b_forw)
if (bp->b_blkno == blkno && bp->b_dev == dev &&
(bp->b_flags & B_INVAL) == 0)
return (1);
return (0);
}
/*
* Assign a buffer for the given block. If the appropriate
* block is already associated, return it; otherwise search
* for the oldest non-busy buffer and reassign it.
*
* We use splx here because this routine may be called
* on the interrupt stack during a dump, and we don't
* want to lower the ipl back to 0.
*/
struct buf *
getblk(dev, blkno)
register dev_t dev;
daddr_t blkno;
{
register struct buf *bp, *dp;
daddr_t dblkno;
int s;
#ifdef DIAGNOSTIC
if (major(dev) >= nblkdev)
panic("blkdev");
#endif
/*
* Search the cache for the block. If we hit, but
* the buffer is in use for i/o, then we wait until
* the i/o has completed.
*/
dp = BUFHASH(dev, blkno);
dblkno = fsbtodb(blkno);
loop:
for (bp = dp->b_forw; bp != dp; bp = bp->b_forw) {
if (bp->b_blkno != dblkno || bp->b_dev != dev ||
bp->b_flags&B_INVAL)
continue;
s = splbio();
if (bp->b_flags&B_BUSY) {
bp->b_flags |= B_WANTED;
sleep((caddr_t)bp, PRIBIO+1);
splx(s);
goto loop;
}
splx(s);
notavail(bp);
return (bp);
}
bp = getnewbuf();
bfree(bp);
bremhash(bp);
binshash(bp, dp);
bp->b_dev = dev;
bp->b_blkno = dblkno;
bp->b_error = 0;
return (bp);
}
/*
* get an empty block,
* not assigned to any particular device
*/
struct buf *
geteblk()
{
register struct buf *bp, *flist;
bp = getnewbuf();
bp->b_flags |= B_INVAL;
bfree(bp);
bremhash(bp);
flist = &bfreelist[BQ_AGE];
binshash(bp, flist);
bp->b_dev = (dev_t)NODEV;
bp->b_error = 0;
return (bp);
}
/*
* Find a buffer which is available for use.
* Select something from a free list.
* Preference is to AGE list, then LRU list.
*/
struct buf *
getnewbuf()
{
register struct buf *bp, *dp;
int s;
loop:
s = splbio();
for (dp = &bfreelist[BQ_AGE]; dp > bfreelist; dp--)
if (dp->av_forw != dp)
break;
if (dp == bfreelist) { /* no free blocks */
dp->b_flags |= B_WANTED;
sleep((caddr_t)dp, PRIBIO+1);
splx(s);
goto loop;
}
splx(s);
bp = dp->av_forw;
notavail(bp);
if (bp->b_flags & B_DELWRI) {
bawrite(bp);
goto loop;
}
if(bp->b_flags & (B_RAMREMAP|B_PHYS)) {
register memaddr paddr; /* click address of real buffer */
extern memaddr bpaddr;
#ifdef DIAGNOSTIC
if ((bp < &buf[0]) || (bp >= &buf[nbuf]))
panic("getnewbuf: RAMREMAP bp addr");
#endif
paddr = bpaddr + btoc(DEV_BSIZE) * (bp - buf);
bp->b_un.b_addr = (caddr_t)(paddr << 6);
bp->b_xmem = (paddr >> 10) & 077;
}
trace(TR_BRELSE);
bp->b_flags = B_BUSY;
return (bp);
}
/*
* Wait for I/O completion on the buffer; return errors
* to the user.
*/
biowait(bp)
register struct buf *bp;
{
register int s;
s = splbio();
while ((bp->b_flags&B_DONE)==0)
sleep((caddr_t)bp, PRIBIO);
splx(s);
if (!u.u_error) /* XXX */
u.u_error = geterror(bp);
}
/*
* Mark I/O complete on a buffer.
* Wake up anyone waiting for it.
*/
biodone(bp)
register struct buf *bp;
{
if (bp->b_flags & B_DONE)
panic("dup biodone");
if (bp->b_flags & (B_MAP|B_UBAREMAP))
mapfree(bp);
bp->b_flags |= B_DONE;
if (bp->b_flags&B_ASYNC)
brelse(bp);
else {
bp->b_flags &= ~B_WANTED;
wakeup((caddr_t)bp);
}
}
/*
* Insure that no part of a specified block is in an incore buffer.
*/
blkflush(dev, blkno)
register dev_t dev;
daddr_t blkno;
{
register struct buf *ep;
struct buf *dp;
register int s;
dp = BUFHASH(dev, blkno);
blkno = fsbtodb(blkno);
loop:
for (ep = dp->b_forw; ep != dp; ep = ep->b_forw) {
if (ep->b_blkno != blkno || ep->b_dev != dev ||
(ep->b_flags&B_INVAL))
continue;
s = splbio();
if (ep->b_flags&B_BUSY) {
ep->b_flags |= B_WANTED;
sleep((caddr_t)ep, PRIBIO+1);
splx(s);
goto loop;
}
if (ep->b_flags & B_DELWRI) {
splx(s);
notavail(ep);
bwrite(ep);
goto loop;
}
splx(s);
}
}
/*
* Make sure all write-behind blocks on dev are flushed out.
* (from umount and sync)
*/
bflush(dev)
register dev_t dev;
{
register struct buf *bp;
register struct buf *flist;
int s;
loop:
s = splbio();
for (flist = bfreelist; flist < &bfreelist[BQ_EMPTY]; flist++)
for (bp = flist->av_forw; bp != flist; bp = bp->av_forw) {
if ((bp->b_flags & B_DELWRI) == 0)
continue;
if (dev == bp->b_dev) {
bp->b_flags |= B_ASYNC;
notavail(bp);
bwrite(bp);
splx(s);
goto loop;
}
}
splx(s);
}
/*
* Pick up the device's error number and pass it to the user;
* if there is an error but the number is 0 set a generalized code.
*/
geterror(bp)
register struct buf *bp;
{
register int error = 0;
if (bp->b_flags&B_ERROR)
if ((error = bp->b_error)==0)
return(EIO);
return (error);
}
/*
* Invalidate in core blocks belonging to closed or umounted filesystem
*
* This is not nicely done at all - the buffer ought to be removed from the
* hash chains & have its dev/blkno fields clobbered, but unfortunately we
* can't do that here, as it is quite possible that the block is still
* being used for i/o. Eventually, all disc drivers should be forced to
* have a close routine, which ought ensure that the queue is empty, then
* properly flush the queues. Until that happy day, this suffices for
* correctness. ... kre
*/
binval(dev)
register dev_t dev;
{
register struct buf *bp;
register struct bufhd *hp;
#define dp ((struct buf *)hp)
for (hp = bufhash; hp < &bufhash[BUFHSZ]; hp++)
for (bp = dp->b_forw; bp != dp; bp = bp->b_forw)
if (bp->b_dev == dev)
bp->b_flags |= B_INVAL;
}