V5/usr/source/s3/gamma.s
.globl gamma, signgam, _signgam
.globl log, sin
half = 040000
one = 40200
two = 40400
eight = 41000
large = 77777
ldfps = 170100^tst
stfps = 170200^tst
/
/ gamma computes the log of the abs of the gamma function.
/ gamma accepts its argument and returns its result
/ in fr0. The carry bit is set if the result is
/ too large to represent.
/ The sign of the gamma function is
/ returned in the globl cell signgam.
/
/ The coefficients for expansion around zero
/ are #5243 from Hart & Cheney; for expansion
/ around infinity they are #5404.
/
/ movf arg,fr0
/ jsr r5,gamma
/ movf fr0,...
/
gamma:
stfps -(sp)
ldfps $200
clr signgam
movf fr1,-(sp)
tstf fr0
cfcc
ble negative
cmpf $eight,fr0
cfcc
blt asymptotic
jsr r5,regular
/
lret:
jsr r5,log
bec ret
4
ret:
movf (sp)+,fr1
ldfps (sp)+
clc
rts r5
/
erret:
movf $large,fr0
movf (sp)+,fr1
ldfps (sp)+
sec
rts r5
/
/ here for positive x > 8
/ the log of the gamma function is
/ approximated directly by the asymptotic series.
/
asymptotic:
movf fr0,-(sp)
movf fr0,fr1
jsr r5,log
subf $half,fr1
mulf fr1,fr0
subf (sp),fr0
addf goobie,fr0
/
movf $one,fr1
divf (sp)+,fr1
movf fr0,-(sp)
movf fr1,-(sp)
mulf fr1,fr1
/
mov r0,-(sp)
mov $p5p,r0
mov $5,-(sp)
movf *(r0)+,fr0
1:
mulf fr1,fr0
addf *(r0)+,fr0
dec (sp)
bne 1b
tst (sp)+
mov (sp)+,r0
mulf (sp)+,fr0
addf (sp)+,fr0
br ret
/
/ here on negative
/ the negative gamma is computed
/ in terms of the pos gamma.
/
negative:
absf fr0
movf fr0,fr1
mulf pi,fr0
jsr r5,sin
negf fr0
cfcc
beq erret
bgt 1f
inc signgam
absf fr0
1:
mov signgam,-(sp)
mulf fr1,fr0
divf pi,fr0
jsr r5,log
movf fr0,-(sp)
movf fr1,fr0
jsr r5,gamma
addf (sp)+,fr0
negf fr0
mov (sp)+,signgam
br ret
/
/ control comes here for arguments less than 8.
/ if the argument is 2<x<3 then compute by
/ a rational approximation.
/ if x<2 or x>3 then the argument
/ is reduced in range by the formula
/ gamma(x+1) = x*gamma(x)
/
regular:
subf $two,fr0
cfcc
bge 1f
addf $two,fr0
movf fr0,-(sp)
addf $one,fr0
movf fr0,-(sp)
addf $one,fr0
jsr r5,regular
divf (sp)+,fr0
divf (sp)+,fr0
rts r5
1:
cmpf $one,fr0
cfcc
bgt 1f
addf $one,fr0
movf fr0,-(sp)
subf $two,fr0
jsr r5,1b
mulf (sp)+,fr0
rts r5
1:
movf fr2,-(sp)
mov r0,-(sp)
mov $p4p,r0
mov $6,-(sp)
movf fr0,fr2
movf *(r0)+,fr0
1:
mulf fr2,fr0
addf *(r0)+,fr0
dec (sp)
bne 1b
mov $7,(sp)
movf fr2,fr1
br 2f
1:
mulf fr2,fr1
2:
addf *(r0)+,fr1
dec (sp)
bne 1b
tst (sp)+
mov (sp)+,r0
divf fr1,fr0
movf (sp)+,fr2
rts r5
/
p4p:
p6;p5;p4;p3;p2;p1;p0
q6;q5;q4;q3;q2;q1;q0
/ p6 = -.67449 50724 59252 89918 d1
/ p5 = -.50108 69375 29709 53015 d2
/ p4 = -.43933 04440 60025 67613 d3
/ p3 = -.20085 27401 30727 91214 d4
/ p2 = -.87627 10297 85214 89560 d4
/ p1 = -.20886 86178 92698 87364 d5
/ p0 = -.42353 68950 97440 89647 d5
/ q7 = 1.0 d0
/ q6 = -.23081 55152 45801 24562 d2
/ q5 = +.18949 82341 57028 01641 d3
/ q4 = -.49902 85266 21439 04834 d3
/ q3 = -.15286 07273 77952 20248 d4
/ q2 = +.99403 07415 08277 09015 d4
/ q1 = -.29803 85330 92566 49932 d4
/ q0 = -.42353 68950 97440 90010 d5
p1:
143643
26671
36161
72154
p2:
143410
165327
54121
172630
p3:
142773
10340
74264
152066
p4:
142333
125113
176657
75740
p5:
141510
67515
65111
24263
p6:
140727
153242
163350
32217
p0:
144045
70660
101665
164444
q1:
143072
43052
50302
136745
q2:
43433
50472
145404
175462
q3:
142677
11556
144553
154177
q4:
142371
101646
141245
11264
q5:
42075
77614
43022
27573
q6:
141270
123404
76130
12650
q0:
144045
70660
101665
164444
p5p:
s5;s4;s3;s2;s1;s0
/
/ s5 = -.16334 36431 d-2
/ s4 = +.83645 87892 2 d-3
/ s3 = -.59518 96861 197 d-3
/ s2 = +.79365 05764 93454 d-3
/ s1 = -.27777 77777 35865 004 d-2
/ s0 = +.83333 33333 33331 01837 d-1
/ goobie = 0.91893 85332 04672 74178 d0
s5:
135726
14410
15074
17706
s4:
35533
42714
111634
76770
s3:
135434
3200
171173
156141
s2:
35520
6375
12373
111437
s1:
136066
5540
132625
63540
s0:
37252
125252
125252
125047
goobie:
40153
37616
41445
172645
pi:
40511
7732
121041
64302
.bss
_signgam:
signgam:.=.+2